Gender Inequality in Biological Hypotheses

New Evidences

Authors

DOI:

https://doi.org/10.53897/RevGenEr.2023.02.12

Keywords:

gender equity, biological behaviors, mate choice, critical choice, mosaic brain

Abstract

The description of behavioral processes has been influenced by masculine thinking, helping to explain behavioral processes based on the prevailing hegemony. Therefore, an analysis of behavioral studies was made, which have been modified based on a more equitable gender thinking and with scientific evidence that supports these paradigm changes. We expose three examples of  heoretical changes based on scientific evidence (feminine choice, honest signals, and mosaic brain), and a fourth example that, in addition to exposing a paradigm shift, was prejudiced as it was an idea proposed by a woman, for how long it took for the idea to permeate biological studies. When explaining the behaviors from the feminine perspectives, more complete explanations of the processes of choosing a partner and fertilization are observed. We also found that male and female brain explanations are not enough to divide brain types in humans. Now we talk about a mosaic brain, where the prevailing idea is that we have a continuum
of structures that give us mixed behavioral characteristics and heterogeneous abilities. 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Georgina Isable Garcia Lopez , Autonomous University of the State of Mexico, State of Mexico, Mexico

Mexican. PhD in Psychological Research from the Universidad Iberoamericana. Full-time professor at the Centro Universitario Atlacomulco, UAEM. Research interests: animal and human behavior: neural development, early pregnancy and hormones.

E-mail: gigarcial@uaemex.mx

Arturo Enrique Orozco Vargas, Autonomous University of the State of Mexico, State of Mexico, Mexico

Mexican. D. in Psychological Research from the University of North Texas. Full time professor at the Centro Universitario Atlacomulco of the UAEM. Research interests: human behavior and psychology of violence.

E-mail: dr.enrique.orozco@hotmail.com

Ulises Aguilera Reyes, Autonomous University of the State of Mexico, State of Mexico, Mexico

Mexican. D. in Veterinary Sciences from the Universidad Autónoma del Estado de México. Full time professor at the Faculty of Sciences of the UAEM. Research interests: neurobiology of sexual and reproductive behavior.

E-mail: uaguilera22@gmail.com

Graciela Meza Diaz, Colegio Mexiquense Group, State of Mexico, Mexico

Mexican. D. in Educational Sciences from the Universidad del Valle de México. Rector of the University Grupo Colegio Mexiquense. Line of research: education.

E-mail: fresitameza@hotmail.com

References

Asís, B.A.; Avery, A.J.; Tylan, C.; Engler, H.I.; Earley, E.I. y T. Langkilde (2021). Honest Signals and Sexual Conflict: Female Lizards Carry Undesirable Indicators of Quality. Ecology and Evolution,11(12): 7647-7659. https://doi.org/10.1002/ece3.7598

Bian, L.; Leslie, S.-J. y Cimpian, A. (2018). Evidence of Bias Against Girls and Women in Contexts that Emphasize Intellectual Ability. American Psychologist, 73(9): 1139-1153. https://doi.org/10.1037/amp0000427

Blazquez, G.N. y Chapa R.A. (2018). Inclusión del análisis de género en la ciencia. Universidad Nacional Autónoma de México, Centro de Investigaciones Interdisciplinarias en Ciencias y Humanidades, Red Mexicana de Ciencia, Tecnología y Género, Consejo Nacional de Ciencia y Tecnología y Benemérita Universidad Autónoma de Puebla.

Buss, D.M. (1989). Sex Differences in Human Mate Preferences: Evolutionary Hypotheses Tested in 37 Cultures. Behavioral and Brain Sciences, 12: 1-49. https://doi.org/10.1017/S0140525X00023992

Cuatrecasas, J. (1965). Biología y ciencias del hombre. Revista de Psicología, 1: 33-38.

Fitzpatrick, J.L.; Willis, C.; Devigili, A.; Young, A.; Carroll, M.; Hunter, H.R. y Brison, D. R. (2020). Chemical Signals from Eggs Facilitate Cryptic Female Choice in Humans. Proceedings. Biological Sciences, 287(1928). https://doi.org/10.1098/rspb.2020.0805

Firman, R.C. y Simmons, L.W. (2015). Gametic Interactions Promote Inbreeding Avoidance in House Mice. Ecol. Lett. 18: 937-943. https://doi.org/10.1111/ele.12471

García-López, G.I.; Aguilar M.M.I y Aguilera, R.U. (2015). Atractivo sexual femenino a lo largo del ciclo menstrual: Análisis bajo la perspectiva de la psicología evolutiva. Revista Argentina de Antropología Biológica, 17(1): 46-53. https://revistas.unlp.edu.ar/raab/article/view/1104

Guzmán, G. (2018). La teoría de señales: ¿es útil el engaño? Psicología y mente. https://psicologiaymente.com/psicologia/teoria-de-senales

Hernández-López, L.E. y Cerda-Molina, A.L. (2012). La selección sexual en los humanos. Salud mental, 35(5): 405-410. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-33252012000500007&lng=es&tlng=es.

Joel, D.; Berman, Z.; Tavor, I.; Wexler, N.; Gaber, O.; Stein, Y.; Shefi, N.; Pool, J.; Urchs, S.; Margulies, D.S.; Liem, F.; Hanggi, J.; Jancke, L. y Assaf, Y. (2015). Sex Beyond the Genitalia: The Human Brain Mosaic. Proceedings of the National Academy of Sciences,112 (50): 15468-15473. https://doi.org/10.1073/pnas.1509654112

Joel, D.; Persico, A.; Salhov, M.; Berman, Z.; Oligschläger, S.; Meilijson, I.Y. y Averbuch, A. (2018). Analysis of Human Brain Structure Reveals that the Brain Types Typical of Males Are Also Typical of Females, and Viceversa. Front. Hum. Neurosci., 18(12): 1-18. https://doi.org/10.3389/fnhum.2018.00399

Joel, D. (2021). Beyond the Binary: Rethinking Sex and the Brain. Neuroscience and Biobehavioral Reviews, 122: 165-175. https://doi.org/10.1016/j.neubiorev.2020.11.018

Joel, D. (2020). Beyond Sex Differences and a Male-Female Continuum: Mosaic Brains in a Multidimensional Space. Handbook of Clinical Neurology, 175: 13-24. https://doi.org/10.1016/B978-0-444-64123-6.00002-3

López-Tricas, J.M. (2018). La hambruna en Holanda (1944-1945) persiste en los genes de los descendientes. http://farmacialasfuentes.com/index.php/la-hambruna-holandesa-1944-1945-pervive-en-sus-descendientes/

Lisman, J.; Cooper, K.; Sehgal, M. y Silva, A.J. (2018). Memory Formation Depends on Both Synapse-Specific Modifications of Synaptic Strength and Cell-Specific Increases in Excitability. Nat. Neurosci., 21: 309-314. https://doi.org/10.1038/s41593-018-0076-6

Biagio, D.; Di Cosmo, A.; Scandurra, A. y Pinelli, C. (2019). Mosaic and Concerted Brain Evolution: The Contribution of Microscopic Comparative Neuroanatomy in ower Vertebrates. Frontiers in Neuroanatomy, 13. https://doi.org/10.3389/fnana.2019.00086

Pedrosa, M.L.; Furtado, M.H.; Ferreira, M. y Carneiro, M.M. (2020). Sperm Selection in IVF: The Long and Winding Road from Bench to Bedside. JBRA Assisted Reproduction, 24(3): 332-339. https://pubmed.ncbi.nlm.nih.gov/32155013/

Pérez-Cerezales, S.; Boryshpolets, S.; Afanzar, O.; Brandis, A.; Nevo, R.; Kiss, V. y Eisenbach, M. (2015). Involvement of Opsins in Mammalian Sperm Thermotaxis. Sci Rep., 5: 1-18. https://doi.org/10.1038/srep16146

Pérez-Gay, J.F. (2019). ¿Tiene género el cerebro? Revista de la Universidad de México, 854: 148-151.

Pigliucci, M. (2007). Do We Need an Extended Evolutionary Synthesis? Evolution, 61: 2743-2349. https://doi.org/10.1111/j.1558-5646.2007.00246.x

Robertson, S.A. y Sharkey, D.J. (2016). Seminal Fluid and Fertility in Women. Fertility and Sterility, 106(3): 511-519. https://doi.org/10.1016/j.fertnstert.2016.07.1101

Rooker, K. y Sergey, G. (2018). On the Evolution of Visual Female Sexual Signalling. Proc. Biol. Sci., 285: 1879. https://doi.org/10.1098/rspb.2017.2875

Sakkas, D.; Ramalingam, M.; Garrido, N. y Barratt, C.L. (2015). Sperm Selection in Natural Conception: What Can We Learn from Mother Nature to Improve Assisted Reproduction Outcomes? Human Reproduction Update, 21(6): 711-726. https://doi.org/10.1093/humupd/dmv042

Shalev, G.; Admon, R.; Berman, Z. y Joel, D. (2020). A Mosaic of Sex-Related Structural Changes in the Human Brain Following Exposure to Real-Life Stress. Brain Structure & Function, 225(1): 461-466. https://doi.org/10.1007/s00429-019-01995-6

Schmeisser, U.H. y Schumann, M.J. (2022). The Sexual Dimorphic Synapse: From Spine Density to Molecular Composition. Front. Mol. Neurosci., 15: 818390. https://doi.org/10.3389/fnmol.2022.818390

Schmalhausen, II. (1949). Factors of Evolution. Chicago University Press, Chicago.

Schlichting, C.D. y Pigliucci, M. (1998). Phenotypic Evolution: A Reaction Norm Perspective. Sinauer Associates, Sunderland.

Simmons, L.W. (2015). Sexual Signalling by Females: Do Unmated Females Increase their Signalling Effort? Animal Behaviour, 1. https://doi.org/10.1098/rsbl.2015.0298

Trivers, R.L. (1972). Parental Investment and Sexual Selection. Sexual Selection and the Descent of Man. Campbell, 136-179. https://doi.org/10.1111/j.1420-9101.2008.01540.x

Wilke, A.; Hutchinson, J.M.C.; Todd, P.M.; Kruger, D.J. and Risk, I. (2006). Taking Used as a Cue in Mate Choice? Evolutionary Psychology. https://doi.org/10.1177/147470490600400130

Wund, M.A. (2012). Assessing the Impacts of Phenotypic Plasticity on Evolution. Integrative and Comparative. Biology, 52(1): 5-15. https://doi.org/10.1093/icb/ics050

Published

2023-09-06

How to Cite

Garcia Lopez, G. I. ., Orozco Vargas, A. E. ., Aguilera Reyes, U., & Meza Diaz, G. (2023). Gender Inequality in Biological Hypotheses : New Evidences. Géneroos, 1(2), 310–328. https://doi.org/10.53897/RevGenEr.2023.02.12

Issue

Section

Dissemination articles