Castañeda-Ramírez, J.; Laurel-Ángeles, V.; Espinoza-Zamora, J.; Salcedo-Hernández, R.;
López-Ramírez, M. y De la Fuente-Salcido, N. (2016). Efecto del quitosano para el
control de hongos fitopatógenos identificados molecularmente de frutas y hortalizas.
Investigación y Desarrollo En Ciencia y Tecnología de Alimentos. 1: 207-2013.
Cheung, N.; Tian, L.; Liu, X. y Li, X. (2020). The destructive fungal pathogen Botrytis
cinerea—Insights from genes studied with mutant analysis. Pathog. 9(11): 923.
Confortin, T.C.; Spannemberg, S.S.; Todero, I.; Luft, L.; Brun, T.; Alves, E.A. y
Mazutti, M.A. (2019). Microbial enzymes as control agents of diseases and pests
in organic agriculture. Gupta, V.K., Pandey, A., Eds.; In New and Future
Developments in Microbial Biotechnology and Bioengineering: Microbial Secondary
Metabolites Biochemistry and Applications. Ed. Elsevier. Amsterdam, The
Netherlands. Pp. 321-332.
Cotoras, M.; García, C.; Lagos, C.; Folch, C. y Mendoza, L. (2001). Antifungal activity on
Botrytis cinerea of flavonoids and diterpenoids isolated from the surface of
Pseudognaphalium spp. Bol. Soc. Chil. Quím. 46(4): 433-440.
Frías, M.; González, M.; González, C.Y. y Brito, N. (2016). BcIEB1, a Botrytis cinerea
secreted protein, elicits a defense response in plants. Plant Sci. 250: 115-124.
Garrido, C.; González-Rodríguez, V.E.; Carbú, M.; Husaini, A.M. y Cantoral, J.M. (2016).
Fungal diseases of strawberry and their diagnosis. Strawberry: growth, development
and diseases, CABI. Vancouver, British Columbia, Canadá. Pp. 157-195.
Guapo-Mora, L.A. (2023). Efectividad biológica de dos consorcios microbianos e inductores
de resistencia para el control de Botrytis cinerea en el cultivo de fresa (Fragaria spp.).
Universidad de Guadalajara. Tesis de Maestría en Agricultura Protegida. México.
87p.
Landi, L.; Feliziani, E. y Romanazzi, G. (2014). Expression of defense genes in
strawberry fruits treated with different resistance inducers. J. Agric.
Food Chem. 62: 3047-3056.
Livak, K.J. y Schmittgen, T.D. (2001). Analysis of relative gene expression data using Real-
Time Quantitative PCR and the 2−ΔΔCT method. Methods. 25: 402-408.
Meena, K. y Kanwar, S.S. (2015). Lipopeptides as the antifungal and antibacterial agents:
applications in food safety and therapeutics. BioMed Res. Int. 473050: 1-9.
Morales, P.; González, M.; Salvatierra-Martínez, R.; Araya, M.; Ostria-Gallardo, E. y Stoll,
A. (2022). New insights into Bacillus-Primed plant responses to a
necrotrophic pathogen derived from the tomato-Botrytis pathosystem.
Microorganisms. 10(8): 1547.
Newerli-Guz, J.; Śmiechowska, M.; Drzewiecka, A. y Tylingo, R. (2023). Bioactive
ingredients with health-promoting properties of strawberry fruit (Fragaria x
ananassa Duchesne). Mol. 28(6): 2711.
Nigro, F.; Ippolito, A.; Lattanzio, V.; Di Venere, D. y Salerno, M. (2000). Effect of
ultraviolet-C light on postharvest decay of strawberry. J. Plant Pathol.
82(1): 29-37.
Osorio, S.; Bombarely, A.; Giavalisco, P.; Usadel, B.; Stephens, C.; Aragüez, I. y Valpuesta,
V. (2011). Demethylation of oligogalacturonides by FaPE1 in the fruits of the wild
strawberry Fragaria vesca triggers metabolic and transcriptional changes associated
with defense and development of the fruit. J. Exp. Bot. 62(8): 2855-2873.